Using Demographic Pattern Analysis to Predict COVID-19 Fatalities on the US County Level

Explainable AI by

Akai Kaeru

Understand: what factors expose a community to COVID-19 risk
Inform: health policy on important concurrent risks and correlations
Predict: local COVID-19 mortality, medical resource needs, success of mitigations

Computational Tools

Methods commonly in use

Simulation (Susceptible - Exposed - Infectious - Recovered (SEIR) model)

- needs almost no data and can look far ahead, but has many unknown parameters \rightarrow observe and keep tuning
Curve fitting (e.g., IHME)
- can learn from other data, but data might not fit perfectly \rightarrow collect data and keep fitting

Machine learning and AI (neural nets, random forests, decision trees)

- can provide predictions, but require lots of data, are black boxes, lack explanations \rightarrow this will happen -- but why?

Our new approach, expanding AI to Explainable AI

Pattern mining

- learns from associations in the data, learns them explicitly and makes them explainable \rightarrow this will happen - and this is why!

Some of our Many Findings

May: we identified $\mathbf{2 7 9}$ patterns of counties where COVID-19 death rate > US average June: $\mathbf{9 8 \%}$ of these sets experienced a death rate growth of 2-3 times the US average July: these trends continued - new counties fitting the profiles got infected and deaths \uparrow

- at risk: sparsely populated counties with poor and aging populations
- at risk: counties with sleep-deprived, low-educated, uninsured residents
- at risk: wealthy counties with high home ownership and housing debt counties with more residents in debt have a higher risk of COVID-19 fatalities

Our Data

500 variables for 3,008 US counties

- demographics
- socioeconomic vulnerabilities
- housing composition vulnerabilities
- minority status and language
- housing, transportation, nutrition
- many of these from the CDC
- COVID-19 death rates (evolving)

Our Approach

Objectives

Find patterns (subpopulations) in the high-dimensional feature space where:

1. the data items are similar in a set of relevant features (variables)
2. the data items have, on average, unusually high (or low) values in some chosen target variable (in our case, COVID-19 death rate)
Benefit: dimension reduction

- typically each patters can be described by just a few features
- it forms a brief narrative of the process that caused the target

Case Studies

This sequence shows how our algorithm automatically identified a subpopulation of counties in the 500-D socio-economic feature space that fits the two search criteria:

- similar in this set's identified three features
- on average a higher than US-average COVID-19 death rate
\uparrow y-axis: May COVID-19 death rate on log scale a county a county in the pattern's subpopulation

Correlation Pattern

Correlations:

- important correlations are often hidden with conventional correlation analysis that uses all data points indiscriminately
- is there a correlation between housing debt and COVID-19 death rate? No.

But we found a correlation for counties in a pattern where

- home ownership is high
- poverty is low

More debt \rightarrow more deaths

The affected counties are in the North East and at the big lakes.
$>$ Weakened immune response

- stress \& worries about debt
- low money \rightarrow poor nutrition

Soon to Come

COVID19 RISK DASHBOARD

Interactive Web Browser-Based Dashboard

Patterns for Selected County: 4017

The dashboard supports the following assessments

- Evaluate: click on a county and see its risk profiles
- Compare : see what other counties have these risk profiles
- Predict:
- Review:
project what death rate might be on the horizon see the risk profiles in context of the overall US

Virus Mitigation
Recommendations

Learn from other counties what to do next

- complete lockdown or just close bars, restaurants?
- how much routine cleaning and disinfection?
- how much protective gear and what?
- how strongly to enforce social distancing?

Again, we can learn from data

- find patterns of counties where a certain strategy worked (or not)
- look which of these patterns your county fits to
- predict what will work and what will not

