

Texas Advancement Analytics Symposium

Patterns of Philanthropy: Using Pattern Mining for Predictive Analysis in Advancement and Fundraising

Klaus Mueller, PhD and Eric Papenhausen, PhD

Akai Kaeru LLC and Stony Brook University

Donations & Academia

small donor

University endowment rankings (2019)

- Harvard: \$41 Billion
 - annual increase: 1.5 Billion (3%)
 - compare with annual budget: 4.5 Billion (10%)
- Yale: \$30 Billion
- Stanford
 \$28 Billion
- Princeton
 \$26 Billion
- •
- Stony Brook: 380 Million

midsize donor

Identifying the Donors

These days a wealth of personal data is collected by universities

- demographics
- family and friends
- geo locations
- academics
- club memberships
- prior donation activities

we will call these properties "features"

Use these data to shape specific fund raising efforts

.. and evaluate their expected profitability

Looking Under the Hood

Our software has two main components

- **Pattern Miner**: searches for groups of donors with similar features and similar donation behavior
- Pattern Browser: allows analysts to explore these patterns and extract actionable insights

A pattern is

- a subpopulation of donors that
- fits inside a low-dimensional hypercube that
- has well-defined value ranges of the donor features

Patterns Must Also Be Interesting!

What makes a group of donors interesting?

• right -- when they have a high probability of donating

An interesting pattern is thus a group of similar people where

- their probability of a specific type of donation is significantly higher than the probability of the general population
- our Pattern Miner extracts these interesting patterns automatically via statistical hypothesis testing (Mann-Whitney, χ2 test for independence)

Let's See an Example (a 2D Pattern)

Total of amount of gifts in FY 2015-2018

Description (High NUM_GIFTS_4YRS + High AGE)

The probability that a randomly selected point within this group has a **higher** LOG_TOT_AMT_4YRS than any point outside this group is 0.88. This finding is statistically highly significant.

	+1.1	
3.00 <= NUM_GIFTS_		
	+0.3	
41.00 <= AGE		

Example Continued....

Next: A Tour of the Visual Pattern Browser

Example:

- what kind of donor is likely to make a Lifetime Endowment and how much
- history is captured by the indicator LIFETIME_ENDOWMENT_IND (0/1)

Takeaways From This First Study

Emailing gives little hope for lifetime endowments

• not much more than not doing anything (40%)

Scheduled visits are much better

• managing donors is the way to go (70%)

Frequent contact pays off for managed donors

almost 100%

Next: Who Will Make a Planned Gift

Planned gifts are typically difficult to predict

- they often occur in a will, after the donor has passed
- there is rarely a prior announcement
- they are usually considerable sums of money

Predictive analysis based on historical data can give the insight

- find the type of secret donor who will end up making a Planned Gift
- captured by the indicator LIFETIME_HH_PG_IND (0/1)

Identify the Most Charitable Unmanaged Donors

This has been a so-far neglected group

- are there any donors who might be forgotten?
- what kinds of people are they?
- can they be converted to managed donors?
- let's have a look at Lifetime Endowment

Takeaways From This Study

Business school grads are the most valuable prospects for lifetime endowments

- any other grads (College of Fine Arts, School of Engineering, School of Social Work, etc.) not so much
- the probability is not overly high for most (29%)
- but still much higher than for the overall unmanaged population (8.6%)

Finally: How About the Radio Station

The campus radio station is the pride of many universities

- they depend on donations big time
- where do these funds they come from?
- how to solicit? who?
- knowing it may even help inform (some of the) programming
- captured by the indicator feature TS_4YRS, set to 1 if a person has donated to it within the past 4 years

0.32 Odds 27.42

24%

+17.0%

1 0

19.00 <= NUM_GIFTS_

🗌 Log X 📃 Log Y

0.9 -

0.7

0.6 -

0.4 -

0.3 -

0.2

- 9.0 - 5.0 - 5.0

0.8 – 🍡 异

Transform Edit Pattern

Ľ

Takeaways From This Study

Exposed a good strategy on how to use our system

- derive nuanced multi-level fundraising strategies by refining the characteristics of a certain family of groups
- first launch a more general campaign for a broader group
- then address smaller but more specific groups with more targeted campaigns with higher probabilities of success

Now to a Live Demo

Pattern Browser 4 XAI

Pattern Browser allows analysts to

- explore a dataset from multiple perspectives
- quickly follow their instincts via simple mouse-click interactions
- within a single session from one dashboard

Fully embraces the paradigm of explainable machine learning / AI

- shows the results not just as a single number but with visual explanations on how the number was derived and how it relates to the overall data
- explanations are succinct and focus on the important features only

Contrast: Subgroup Analysis

Decomposing large populations into sets of homogenous subgroups is well known in fields like medicine

- seeks to identify a specific patient characteristics that benefit a desired outcome
- typically done using prior knowledge, pre-specification, or stepwise procedures
- not scalable in the number of features

In contrast, we learn these subgroups by automated *discovery*

- robustly via statistical pattern mining
- this can scale to 1,000s and more features/variables

Contrast: Regression Models

Regression models are a standard approach in data analysis

- intractable to explicitly model all possible interactions between variables
- even with pairwise interactions we would have over 10,000 possible interactions in the study we presented here
- also are restricted to modeling linear relationships -- nonlinear relationships would require additional transformations

In contrast, our system can identify interactions and capture nonlinear relationships automatically

Contrast: Black Box Models

Random forests, neural networks, etc. have become ubiquitous

- lots of libraries are available
- explainable AI tools, such as SHAP, LIME, can help explain a black box model's decision
- no guarantees if the decision is based on a true cause-effect relationship or a spurious correlation

In contrast, our system puts the human in the sense-making loop

- analyst can identify the most likely explanation and choose an action
- e.g. select the most likely explanation why a group is more likely to donate

The system used for this analysis

- available as a software package called Pattern Browser
- developed by Akai Kaeru LLC <u>http://akaikaeru.com</u>
- development was funded by NSF SBIR grant 192694 (Phase I and II)

Thanks also to

• John Gough from U Texas, Austin for providing the data and his insight interpreting them